收藏本站  |  联系我们  |  English  |  中国科学院  
 首  页  实验室概况 研究队伍 科研资源 开放交流 科研成果 研究生园地
 
当前位置:首页 > 研究组介绍 > 国家生态安全与可持续发展 > 生态系统评估与保护研究组
郭雪

姓名

郭雪

性别

 

职称

研究员

实验室职务

电话

 

传真

 

电子邮件

xueguo@rcees.ac.cn

专业

微生物生态学

地址

北京市海淀区双清路18号生态科研楼316

简要介绍

郭雪,博士,中国科学院生态环境研究中心城市与区域生态国家重点实验室研究员。主要从事土壤微生物与生态功能过程等方面的研究,利用分子生物学、微生物生态学、宏基因组学、地学模型等交叉学科的方法,研究微生物对气候变化的响应机理、群落构建机制、演替规律、碳循环调控机制及相关碳循环模型,揭示长期气候变化驱动微生物的演替规律,明确微生物群落对气候变化的温度适应性和调控碳循环机制;开发耦合微生物功能的碳库模型。荣获中国新锐科技人物奖、中国土壤学会优秀青年学者奖和美国生态学会亚洲分会青年生态学家奖等荣誉。主持或参与国家自然科学基金、科技部重点研发计划等科研项目8项,发表相关学术论文30余篇。

学习经历

2012.09-2018.06 中南大学 博士 微生物学

     (2014.09-2017.09  美国俄克拉荷马大学 国家公派联合培养)

2010.09-2012.06 中南大学 硕士 微生物学

2006.09-2010.06 中南大学 学士 生物技术

工作经历

2023.03-至今 中国科学院生态环境研究中心,城市与区域生态国家重点实验室,研究员

2020.10-2023.03 清华大学,环境学院,助理研究员

2018.07-2020.10 清华大学,环境学院,博士后

研究方向

土壤微生物、碳循环与气候变化;微生物组与生态功能过程

承担课题

(1) 国家自然科学基金面上项目:利用地热温泉研究长期增温对高寒草地土壤碳库的影响及微生物机制 (2023-2026,主持)

(2) 国家自然科学基金专项项目: 地下多孔储层中氢气输运机理与调控方法研究 (2023-2025,子课题负责人)

(3) 国家重点研发计划项目:“场地污染修复技术绿色低碳全过程评估技术”课题“绿色低碳技术评估指标体系和评估方法”(2022-2026,课题负责人)

(4) 国家重点研发计划项目:基于监测的污染物自然衰减新型指标体系与衰减效率评估方法研究 (2020-2023, 子课题负责人)

(5) 第二次青藏高原综合考察研究专题:高原微生物多样性保护和可持续利用(2019-2025,骨干参与)

(6) 国家自然科学基金青年项目:青藏高原草甸土壤病毒对气候暖化的响应特征和演替规律(2020-2022,主持,已结题)

(7) 中国博士后科学基金特别资助:高寒草甸土壤病毒对长期增温和降水变化响应特征的研究 (2019-2020,主持 已结题)

(8) 中国博士后科学基金面上项目:青藏高原高寒草甸土壤病毒对长期增温的响应及反馈机制 (2018-2019,主持,已结题)

重要著作
与成果

1.  获得奖励

2022年,第八届中国土壤学会优秀青年学者奖

2021年,中国新锐科技人物奖

2021年,美国生态学会亚洲分会青年生态学家奖

2020年,湖南省优秀博士学位论文

2018年,微生物生态青年科技创新奖

2018年,第二届“钱易环境奖”一等奖

 

2. 发表学术论文(#共同第一作者;*表示为通讯作者)

[1] Qi Q, Zhao J, Tian R, Zeng Y, Xie C, Gao Q, Dai T, Wang H, He J, Konstantinidis KT, Yang Y, Zhou J, & Guo X*. Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland. Global Change Biology 2022, 00: 1– 15.

[2] Guo X*, Yuan M, Lei J, Shi Z, Zhou X, Li J, Deng Y, Yang Y, Wu L, Luo Y, Tiedje JM, Zhou J. Climate warming restructures seasonal dynamics of grassland soil microbial communities. mLife 2022, 1: 245– 256.

[3] Wu L#, Zhang Y#, Guo X#, Ning D, Zhou X, Feng J, Yuan M, Liu S, Guo J, Gao Z, Ma J, Kuang J, Jian S, Han S, Yang Z, Ouyang Y, Fu Y, Xiao N, Liu X, Wu L, Zhou A, Yang Y, Tiedje JM, Zhou J*. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology 2022, 7: 1054-1062.

[4] Yuan M#, Guo X#, Wu L#, Zhang Y#, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J*. Climate warming enhances microbial network complexity and stability. Nature Climate Change 2021, 11: 343–348.

[5] Lei J#, Guo X#, Zeng Y, Zhou J, Gao Q*, Yang Y*. Temporal changes of global soil respiration since 1987. Nature Communications 2021, 12: 403

[6] Guo X#, Gao Q#, Yuan M#, Wang G#, Zhou X, Feng J, Shi Z, Hale L, Wu L, Zhou A, Tian R, Liu F, Wu B, Chen L, Gyo Jung C, Niu S, Li D, Xu X, Jiang L, Escalas A, Wu L, He Z, Van Nostrand JD, Ning D, Liu X, Yang Y, Schuur, EAG, Konstantinidis KT, Cole JR, Penton CR, Luo Y, Tiedje JM, Zhou J*. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature communications 2020, 11: 4897.

[7] Guo X#, Zhou X#, Hale L#, Yuan M, Ning D, Feng J, Shi Z, Li Z, Feng B, Gao Q, Wu L, Shi W, Zhou A, Fu Y, Wu L, He Z, Van Nostrand JD, Qiu G, Liu X, Luo Y, Tiedje JM, Yang Y, Zhou J*. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nature Ecology & Evolution 2019, 3(4): 612-619.

[8] Guo X#, Feng J#, Shi Z#, Zhou X, Yuan M, Tao X, Hale L, Yuan T, Wang J, Qin Y, Zhou A, Fu Y, Wu L, He Z, Van Nostrand JD, Ning D, Liu X, Luo Y, Tiedje JM, Yang Y, Zhou J*. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change 2018, 8(9):813-818.

[9] Guo X#, Zhou X#, Hale L, Yuan M, Feng J, Ning D, Shi Z, Qin Y, Liu F, Wu L, He Z, Van Nostrand JD, Liu X, Luo Y, Tiedje JM, Zhou J*. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass. Frontiers in Microbiology 2018, 9(954).

[10] Guo X, Yin H, Liang Y, Hu Q, Zhou X, Xiao Y, Ma L, Zhang X, Qiu G, Liu X*. Comparative Genome Analysis Reveals Metabolic Versatility and Environmental Adaptations of Sulfobacillus thermosulfidooxidans Strain ST. PLOS ONE 2014, 9(6):e99417.

[11] Dai Z#, Guo X#, Yin H, Liang Y, Cong J, Liu X*. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage. PLOS ONE 2014, 9(2):e87976.

[12] Guo X, Yin H, Cong J, Dai Z, Liang Y, Liu X*. RubisCO Gene Clusters Found in a Metagenome Microarray from Acid Mine Drainage. Applied and Environmental Microbiology 2013, 79(6):2019.

[13] Yu Z, Chen X, Zhai F, Gao Q, Chen X, Guo X, Xu Y, Gao M, Mo C, Feng Z, Yang Y, Li H*. Elevated ozone enhances the network stability of rhizospheric bacteria rather than fungi. Agriculture, Ecosystems & Environment 2023, 345:108315.

[14] Yu Z, Gao Q, Guo X, Peng J, Qi Q, Chen X, Gao M, Mo C, Feng Z, Wong M, Yang Y, Li H*. Phylogenetic Conservation of Soil Microbial Responses to Elevated Tropospheric Ozone and Nitrogen Fertilization. Msystems 2023, e00721-22.

[15] Ma X, Wang T, Shi Z, Chiariello N, Docherty K, Field C, Gutknecht J, Gao Q, Gu Y, Guo X, Hungate B, Lei J, Niboyet A, Roux X, Yuan M, Yuan T, Zhou J*, Yang Y*. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity. Microbiome 2023, 10 (1): 1-13

[16] Cui Y, Bing H, Moorhead DL, Delgado-Baquerizo M, Ye L, Yu J, Zhang S, Wang X, Peng S, Guo X, Zhu B, Chen J, Tan W, Wang Y, Zhang X, Fang L. Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Communications Earth & Environment 2022, 3(184). https://doi.org/10.1038/s43247-022-00523-5

[17] Xiao N, Zhou A, Kempher M, Zhou B, Shi Z, Yuan M, Guo X, Wu L, Ning D, Van Nostrand J, Firestone M*, Zhou J*. Disentangling direct from indirect relationships in association networks. Proceedings of the National Academy of Sciences of the United States of America 2022, 119(2): e2109995119.

[18] Dai T, Wen D*, Bates C, Wu L, Guo X, Liu S, Su Y, Lei J, Zhou J, Yang Y*. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nature Communications 2022, 13(1): 175.

[19] Liu F, Wang Z, Wu B, Bjerg T, Hu W, Guo X, Guo J, Nielsen L, Qiu R, Xu M*. Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. The ISME journal 2021, 15 (5), 1551-1563.

[20] Qi Q, Yue H, Zhang Z, Van Nostrand J, Wu L, Guo X, Feng J, Wang M, Yang S, Zhao J, Gao Q, Zhang Q, Zhao M, Xie C, Ma Z, He J, Chu H, Huang Y, Zhou J, Yang Y*. Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios. Mbio 2021, 12 (1), e00761-20.

[21] Feng J, Wang C, Lei J, Yang Y, Yan Q, Zhou X, Tao X, Ning D, Yuan M, Qin Y, , Shi Z, Guo X, He Z, Van Nostrand JD, Wu L, Bracho-Garillo RG, Penton CR, Cole JR, Konstantinidis KT, Luo Y, Schuur EAG, Tiedje JM, and Zhou J*. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 2020, 8: 3.

[22] Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J*. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications 2020, 11:4717.

[23] Wu R, Chia B, Cole R. J, Gunturu K. S, Guo X, Tian R, Gu J, Zhou J, Tiedje M. J. Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming. The ISME journal 2020, 14:1651–1662.

[24] Johnston E, Hatt J, He Z, Wu L, Guo X, Luo Y, Schuur E, Tiedje JM, Zhou J, Konstantinidis KT*. Responses of tundra soil microbial communities to half a decade of warming at two critical depths. Proceedings of the National Academy of Science 2019, 116(30): 15096-15105.

[25] Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R, Pegoraro E, Penton CR, Wu L, Cole JR, Konstantinidis KT, Luo Y, Tiedje JM, Schuur E, Zhou J*. Tundra Microbial Community Taxa and Traits Predict Decomposition Parameters of Stable, Old Soil Organic Carbon. The ISME journal 2019, 13(12): 2901-2915.

[26] Gao Q, Yang Y, Feng J, Tian R, Guo X, Ning D, Hale L, Wang M, Cheng J, Wu L, Zhao M, Zhao J, Wu L, Qin Y, Qi Q, Liang Y, Sun B, Chu H, Zhou J*. The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil. Global Ecology and Biogeography 2019, 0: 1-13.

[27] Feng J, Penton CR, He Z, Van Nostrand JD, Yuan MM, Wu L, Wang C, Qin Y, Shi ZJ, Guo X, Schuur EAG, Luo Y, Bracho R, Konstantinidis KT, Cole JR, Tiedje JM, Yang Y, Zhou J. Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils. mBio 2019, 10(1):e02521-02518.

[28] Shi Z*, Lin Y, Wilcox KR, Souza L, Jiang L, Jiang J, Jung CG, Xu X, Yuan M, Guo X, Wu L, Zhou J, Luo Y. Successional change in species composition alters climate sensitivity of grassland productivity. Global Change Biology 2018, 24(10):4993-5003.

[29] Zhang X, Liu X, Liang Y, Guo X, Xiao Y, Ma L, Miao B, Liu H, Peng D, Huang W, Zhang Y, Yin H. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss. Applied and Environmental Microbiology 2017, 83(7):e03098-03016.

[30] Zhang X, Liu X, Liang Y, Xiao Y, Ma L, Guo X, Miao B, Liu H, Peng D, Huang W, Yin H. Comparative Genomics Unravels the Functional Roles of Co-occurring Acidophilic Bacteria in Bioleaching Heaps. Frontiers in Microbiology 2017, 8(790).

[31] Guo Y, Guo X, Wu H, Li S, Wang G, Liu X*, Qiu G, Wang D. A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy 2017, 171:213-221.

[32] Liu Y, Yang H, Zhang X, Xiao Y, Guo X, Liu X. Genomic Analysis Unravels Reduced Inorganic Sulfur Compound Oxidation of Heterotrophic Acidophilic Acidicaldus sp. Strain DX-1. BioMed Research International 2016:8.

[33] Hu Q, Guo X, Liang Y, Hao X, Ma L, Yin H, Liu X*. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system. Research in Microbiology 2015, 166(6):525-534.

[34] Li Q, Ding D, Sun J, Wang Q, Hu E, Shi W, Ma L, Guo X, Liu X. Community dynamics and function variation of a defined mixed bioleaching acidophilic bacterial consortium in the presence of fluoride. Annals of Microbiology 2015, 65(1):121-128.

[35] Jiang H, Liang Y, Yin H, Xiao Y, Guo X, Xu Y, Hu Q, Liu H, Liu X. Effects of arsenite resistance on the growth and functional gene expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in pure culture and coculture. BioMed Research International 2015.

[36] Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiology 2014, 14(1):179.

[37] Xu Y, Yin H, Jiang H, Liang Y, Guo X, Ma L, Xiao Y, Liu X. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Archives of Microbiology 2013, 195(9):637-646.

[38] Hu Q, Liang Y, Yin H, Guo X, Hao X, Liu X, Qiu G. Metagenomic insights into the microbial community diversity between leaching heap and acid mine drainage. Advanced Materials Research 2013, 825: 141-144

[39] Liang Y, Gao H, Guo X, Chen J, Qiu G, He Z, Zhou J, Liu X. Transcriptome analysis of pellicle formation of Shewanella oneidensis. Archives of Microbiology 2012, 194(6):473-482.

 
【打印本页】【关闭本页】
  版权所有 © 城市与区域生态国家重点实验室 京ICP备05002858号
地址:北京市海淀区双清路18号 邮编:100085  联系电话:010-62941033